

PROGRAMA EDUCATIVO

LICENCIATURA EN INGENIERÍA EN QUÍMICA FARMACÉUTICA EN COMPETENCIAS PROFESIONALES

PROGRAMA DE ASIGNATURA: REACTORES FARMACÉUTICOS

CLAVE: E-RFA-3

Propósito de apr Asignatura	rendizaje de la	El estudiante establecerá las condiciones de operación de los reactores empleados en procesos farmacéuticos a través del cálculo de sus variables para garantizar la calidad de los productos y la optimización de los procesos.			
Competencia a la que contribuye la asignatura Dirigir procesos de fabricación farmacéuticos a través de metod y equipos, herramientas administrativas y de calidad con base contribuir a la salud de la población y fortalecer el sector.			de calidad con base en la norma	•	
Tipo de competencia	· Cuatrimestre		Modalidad	Horas por semana	Horas Totales
Específica	Específica 8 4.69		Escolarizada	5	75

Unidades de Aprendizaje	Horas del Saber	Horas del Saber Hacer	Horas Totales
I. Reactores homogéneos simples y múltiples	12	18	30
II. Reactores heterogéneos	10	15	25
III. Introducción al diseño de reactores	8	12	20
Totales	30	45	75

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1	
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-VI-FA-LIC-11.1	

Funciones	Capacidades	Criterios de Desempeño
Diseñar formulaciones y procesos farmacéuticos innovadores a través de la identificación de oportunidades de mejora y necesidades, método científico, métodos analíticos, toxicodinámicos y toxicocinéticos, metodología de planta piloto y escalamiento, con base en la normatividad aplicable para contribuir al fortalecimiento del sector y coadyuvar en la salud de la población.	Evaluar oportunidades de mejora a procesos y productos farmacéuticos a través de método científico, métodos y técnicas analíticas considerando la normatividad, la ciencia aplicada de la química y necesidades de la población para su optimización.	Entrega un reporte de las oportunidades detectadas a procesos y productos farmacéuticos que contenga: De producto: Propiedades químicas Propiedades físicas Propiedades físicoquímicas Propiedades toxicológicas Propuesta de mejora Justificación Conclusiones De proceso: Diagrama de flujo Instrumentación y control Variables de proceso Balances de materia y energía Cálculo de reactores y cinética química Operaciones unitarias Propuesta de mejora Justificación Conclusiones
	Proponer productos y procesos farmacéuticos innovadores con base en la ciencia aplicada de la química, métodos y técnicas analíticas, nuevas tecnologías, normatividad aplicable y métodos estadísticos para determinar su viabilidad.	Entrega una propuesta de productos y procesos farmacéuticos que incluya: Producto: — Introducción — Fórmula química — Forma farmacéutica — Componentes

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-FA-LIC-11.1

Desarrollar pruebas piloto de productos farmacéuticos y biotecnológicos innovadores a través de variables críticas de proceso, sistemas de control, métodos de ensayo y verificación con base en la normatividad aplicable para garantizar la efectividad de estos.	 Presentación Conservación Pruebas de validación Control de calidad Justificación Proceso: Introducción Innovación Operaciones unitarias Equipos Variables de control Pruebas de validación Control de proceso Optimización Justificación Entrega reporte de la prueba piloto que incluya: Producto: Objetivo Formulación química Forma farmacéutica Propiedades fisicoquímicas Pruebas de estabilidad Pruebas de validación Normatividad aplicada Conclusiones y recomendaciones
	 Pruebas de estabilidad Pruebas de validación Normatividad aplicada
	Proceso: - Objetivo - Diagrama de flujo

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1	
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-FA-LIC-11.1	

	 Balance de materia y energía Parámetros de control Pruebas de validación Instrumentación y control del proceso Técnicas analíticas Normatividad aplicable Conclusiones y recomendaciones"
Desarrollar el escalamiento y primer lote industrial a través de la aplicación de metodología de escalado, herramientas de planeación, software especializado, técnicas tradicionales y modernas de análisis, desarrollo de procesos y selección de equipos, considerando la normatividad aplicable para establecer las especificaciones técnicas.	Entrega primer lote y ficha técnica de formulación de producto y proceso que contenga: Especificaciones de Producto: Formulación química Forma farmacéutica Propiedades fisicoquímicas Pruebas de estabilidad Pruebas de validación Normatividad aplicada Conclusiones y recomendaciones Especificaciones de proceso: Diagrama de flujo Balance de materia y energía Parámetros de control Pruebas de validación Técnicas de escalamiento y software utilizado Instrumentación y control del proceso Técnicas analíticas Normatividad aplicable Conclusiones y recomendaciones

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11 1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-FA-LIC-11.1

UNIDADES DE APRENDIZAJE

Unidad de Aprendizaje	I. Reactores homogéneos simples y múltiples					
Propósito esperado	El estudiante determinará las condiciones de operación en reactores homogéneos simples, para obtener productos farmacéuticos con las especificaciones de calidad requeridas.					
Tiempo Asignado	Horas del Saber	12	Horas del Saber Hacer	18	Horas Totales	30

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Reactores continuos y discontinuos	Explicar la diferencia entre reactores continuos y discontinuos, así como sus aplicaciones en el sector farmacéutico.	Calcular las velocidades de reacción y el volumen para las condiciones existentes en reactores homogéneos simples.	Demostrar resiliencia y capacidad para enfrentar desafíos tecnológicos.
	Describir las variables apropiadas de operación del reactor: presión,	Realizar el balance de masa general en un reactor continuo y	Expresar habilidades de liderazgo y capacidad para coordinar equipos.
	temperatura y composición, así como su cinética y ecuaciones de diseño.	discontinuo. Determinar la ecuación general de	Demostrar habilidades de gestión del tiempo y
	Explicar las ecuaciones de diseño de	reactores continuos y discontinuos en estado estacionario.	atención al detalle.
	reactores continuos y discontinuos (isotérmicos y adiabáticos).	Realizar el diseño virtual de un reactor farmacéutico continuo, mediante un software dedicado	Demostrar creatividad y habilidad para encontrar soluciones innovadoras.
Sistemas de reactores múltiples	Describir los conceptos requeridos de cálculo de sistemas de	Seleccionar los métodos analíticos y gráficos de sistemas de reactores	Fomentar el desarrollo de procesos y productos que
	reactores múltiples, tales como concentración, densidad, flujo estable,	múltiples.	atiendan las necesidades del sector social y productivo.

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-11.1

		1	
	velocidad de flujo, ecuaciones de diseño. Explicar los procesos químicos farmacéuticos que requieren sistemas de reactores múltiples y sus ecuaciones de cálculo.	Monitorear las condiciones de operación de una de reactores de mezcla y flujo de pistón acoplados en serie y en paralelo. Implementar aplicaciones móviles que permitan el monitoreo y	Desarrollar procesos y productos considerando la preservación del medio ambiente y la normatividad vigente. Fomentar la responsabilidad
		control en tiempo real de las variables de reactores múltiples.	y honestidad a través del desarrollo de actividades en
Reactores con recirculación	Explicar el efecto de la recirculación en la mejora de la eficiencia del reactor.	Monitorear las condiciones de operación de un reactor con circulación.	forma individual o en equipo de forma proactiva.
	Describir los procesos farmacéuticos que requieren reactores con recirculación y estructurar sus ecuaciones de cálculo.		Asumir una actitud metódica y analítica en la evaluación del proceso."
Reactores no isotérmicos	Identificar los factores que afectan la operación de un reactor isotérmico. Explicar procesos farmacéuticos donde se emplean reactores no isotérmicos y las equaciones de cálculo.	Establecer los parámetros de los reactores no isotérmicos en procesos farmacéuticos.	
Desviaciones del comportamiento ideal	isotérmicos y las ecuaciones de cálculo. Identificar las causas principales de las desviaciones de los reactores con respecto a la idealidad. Interpretar procesos farmacéuticos donde intervienen reactores con desviaciones con relación al comportamiento ideal.	Establecer las condiciones de mezclado y distribución de tiempo de residencia en reactores no ideal de procesos farmacéuticos.	

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-UI-FA-LIC-11.1

Proceso Enseñanza-Aprendizaje				
Métados y técnicos do ancasanza	Medios y materiales didácticos	Espacio Formativo		
Métodos y técnicas de enseñanza		Aula	Χ	
Análisis de casos	Pizarrón	Laboratorio / Taller	Х	
Prácticas en laboratorio. Simulación.	Banco de reactores químicos Software de Simulación PC Medios audiovisuales Equipo y reactivos de laboratorio Internet.	Empresa		

Proceso de Evaluación				
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación		
Los estudiantes comprenden los efectos de la P, T y composición en los reactores químicos Los estudiantes identifican el tipo de reacción en procesos homogéneo, heterogéneo, catalítico, exotérmico, endotérmico. Los estudiantes analizan las condiciones de operación de reactores homogéneos	A partir de un estudio de casos, elaborará un reporte que incluya: - Portada - Tipo de reactor - Condiciones de operación - Volumen del reactor - Tiempo de residencia - Relación de recirculación - Rendimiento y selectividad - Conclusiones - Bibliografía	Estudio de Casos Rúbrica		

Unidad de Aprendizaje	II. Reactores heterogéneos	
Propósito esperado	El estudiante establecerá las condiciones químicas de reactores, para mejorar la eficiencia y selectividad de los	
Proposito esperado	procesos farmacéuticos.	

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-FA-LIC-11.1

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Procesos heterogéneos	Explicar las reacciones heterogéneas y su cinética, así como los procesos en los que se aplican.	Seleccionar procesos y el tipo de reactor heterogéneo a utilizar en procesos farmacéuticos.	Demostrar resiliencia y capacidad para enfrentar desafíos tecnológicos.
	Identificar los tipos de reactores heterogéneos de lecho fijo, móvil y de lodos. Describir las condiciones de operación de los reactores heterogéneos.		Demostrar habilidades de liderazgo y capacidad para coordinar equipos. Demostrar creatividad y habilidad para encontrar soluciones innovadoras.
	Describir los procesos farmacéuticos en los que se llevan a cabo reacciones sólido-fluido. Explicar las ecuaciones de diseño para reactores de procesos sólido-fluido.	Establecer las condiciones de optimización en un reactor de procesos farmacéuticos de sólidofluido.	Asumir capacidad de análisis y toma de decisiones Desarrollar procesos y productos considerando la preservación del medio ambiente y la normatividad
Reactores catalíticos gas- sólido	Definir los modelos cinéticos de reacciones catalíticas. Identificar las etapas de control de un reactor catalítico en procesos farmacéuticos.	Determinar las especificaciones de operación de reactores catalíticos en procesos farmacéuticos.	vigente. Fomentar la responsabilidad y honestidad a través del desarrollo de actividades en

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-11.1

	Explicar los tipos de adsorción, el modelo de Langmuir en los procesos gas-sólido		forma individual o en equipo de forma proactiva.
Reactores catalíticos líquido-sólido	·	Verificar el funcionamiento óptimo de los reactores catalíticos en procesos industriales y de laboratorio.	Asumir una actitud metódica y analítica al proponer productos y procesos innovadores.
Reactores catalíticos líquido-gas	Explicar los tipos de adsorción, el modelo de Langmuir en los procesos líquido-gas		

Proceso Enseñanza-Aprendizaje				
Métadas estámicas do oucosan-a	Madian, unatorial and idéations	Espacio Formativo		
Métodos y técnicas de enseñanza	Medios y materiales didácticos	Aula		
Análisis de casos	Pizarrón	Laboratorio / Taller	Х	
Prácticas en laboratorio. Simulación.	Banco de reactores químicos Software de Simulación PC Medios audiovisuales Equipo y reactivos de laboratorio Internet.	Empresa		

Proceso de Evaluación			
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación	
El estudiante va a comprender los fundamentos de las	A partir de un caso práctico de la industria	Caso de estudio	
reacciones químicas heterogéneas.	farmacéutica y química, elaborará un	Proyecto	
El estudiante va a identificar los procesos donde	informe que contenga:	Rúbrica	
intervienen reacciones			
químicas heterogéneas.	– Portada		
El estudiante va a seleccionar el tipo de reactor y los	 Variables químicas del reactor 		
métodos de diseño.	heterogéneo según sea el caso de		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-FA-LIC-11.1

El estudiante va a organizar la información para el		sólido-fluido, fluido-fluido, catalíticos y	
desarrollo de los		biocatalíticos	
cálculos.	_	Condiciones de operación	
	_	Volumen del reactor	
	_	Tiempo de residencia	
	_	Relación de recirculación	
	_	Rendimiento y selectividad	
	_	Conclusiones	
	_	Bibliografía	

Unidad de Aprendizaje	III. Introducción al diseño de reactores					
Propósito esperado	El estudiante propondrá el diseño de un reactor que garantice su eficiencia, considerando la naturaleza de la reacción química y la implementación de accesorios requeridos para el control de las variables del proceso en la Industria Farmacéutica.					
Tiempo Asignado	Horas del Saber	8	Horas del Saber Hacer	12	Horas Totales	20

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Características del recipiente	Explicar las características del material con que están fabricados la mayoría de los reactores.		Demostrar creatividad y proactividad para la resolución de problemas.
Sistemas de calentamiento y enfriamiento	Identificar los tipos de Sistemas de Calentamiento y enfriamiento de un Reactor y su conjunto.	Seleccionar el material más adecuado de acuerdo con las características particulares de los reactivos y productos a obtener.	- Demostrar habilidad para trabajar en equipo y colaborar en proyectos complejos.

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-11.1

Sistemas de agitación	Describir las características de los medios de agitación, tipos y las unidades en que se mide.	Establecer las condiciones óptimas del sistema de enfriamiento, del sistema de calentamiento y mecanismo de agitación de un sistema de reactor químico.	Demostrar resiliencia y capacidad para enfrentar desafíos tecnológicos. Asumir capacidad de análisis
Conexiones	Describir las conexiones periféricas y externas que son necesarias para el correcto funcionamiento del reactor.	Determinar y proponer las conexiones periféricas y externas ideales para el correcto funcionamiento del reactor en cada caso en particular.	y toma de decisiones Asumir capacidad de análisis y reflexión para la resolución de problemas. Demostrar habilidad para
Instrumentación y accesorio	Definir los medios, instrumentación y accesorios externos necesarios para el monitoreo y correcto funcionamiento de un reactor químico continuo, por lotes, catalítico y multifases.	Aprender a verificar y supervisar el funcionamiento óptimo de la instrumentación y accesorios externos necesarios para el monitoreo y control de un reactor químico continuo, por lotes, catalítico y multifases.	adaptarse y ajustar estrategias en función de resultados.

Proceso Enseñanza-Aprendizaje					
Métodos y técnicas de enseñanza	Espacio Formativo Aula				
Análisis de casos. Prácticas en laboratorio. Simulación. Maquetas. Prototipos a escala.	Pizarrón Reactor Químico Software de Simulación PC Medios audiovisuales Maquetas y Prototipos a escala.	Laboratorio / Taller Empresa	Х		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-UI-FA-LIC-II.I

Proceso de Evaluación					
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación			
Los estudiantes comprenden las características de los materiales de fabricación de los reactores químicos. Los estudiantes determinan las condiciones óptimas de los parámetros de control de los reactores químicos. Los estudiantes proponen los tipos de accesorios requeridos en los reactores químicos. Los estudiantes analizan las variables de diseño de los reactores químicos.	A partir de un estudio de caso, elaborará un reporte que incluya: - Portada Tipo de reactor Condiciones de operación Volumen del reactor Tiempo de residencia Material de construcción Sistema de Calentamiento o enfriamiento Tipo de agitación y características - Conexiones externas e instrumentación necesaria para asegurar el correcto funcionamiento y control del reactor - Conclusiones - Bibliografía	Caso de estudio Proyecto Rúbrica			

Perfil idóneo del docente						
Formación académica	Formación Pedagógica	Experiencia Profesional				
Profesionista en el área Química, QFB,	Al menos dos años de experiencia en la	Mínimo un año de experiencia en el ejercicio				
Ingeniería Química o afín, con experiencia en	enseñanza de la farmacología o ciencias de	profesional del área Farmacéutica				
el área farmacéutica.	la salud en nivel superior.					
	Capacitaciones en estrategias didácticas.					
	Inducción al modelo educativo de las UST					

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-11.1

		Referencias bibliográf	ficas		
Autor	Año	Título del documento	Lugar de publicación	Editorial	ISBN
Levenspiel, O.	2021	Ingeniería de las reacciones químicas	INDIA-UK	Wiley	9789354244605
Scott Fogler, H	2019	Elementos de Ingeniería de las reacciones químicas.	México	Pearson	9789353948597
Sinko, J.	2023	Physical and Pharmaceutical Sciences	USA	Wolters- Kluwer House	9781975174811
Bea Sánchez J.L.	2016	Reactores Químicos	España	Síntesis	9788490773413
Tiscareño Lechuga F.	2012	ABC para comprender reactores químicos con multireacción.	México	Reverté	9789686708769
Antonio Creus	2013	Instrumentación Industrial	México	Marcombo - AlfaOmega.	9786077070429
Don W. Green, Marylee Z. Southard.	2019	Manual del Ingeniero Químico de Perry.	México		9780071834087
Román Ramírez, Isaias Hernández.	2020	Diseño de Reactores Homogéneos	México	Cengage Learning	9786075269320
Montiel Cota, Montiel Fernández, Balcázar Meza	2017	Diseño de Reactores Químicos Batch (Lotes) y Semibatch (Semicontinuos).	España	Academia Española	9786202234641
Cuevas García R.	2013	Introducción al Diseño de Reactores Homogéneos	España	Académica Española	9783659065514

Referencias digitales						
Autor Fecha de recuperación Título del documento Vínculo						
Richard K. Herz.	10/06/24	Reactor Lab. Interactive simulations of chemical	https://reactorlab.net/resource			
10/00/24		reactors for active learning	s/grad-cre-notes/index.html			

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-11.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	